Problem: 0(1(2(x1))) -> 0(1(3(2(x1)))) 0(1(2(x1))) -> 0(2(1(0(x1)))) 0(1(2(x1))) -> 0(2(1(3(x1)))) 0(1(2(x1))) -> 0(2(2(1(x1)))) 0(1(2(x1))) -> 0(2(2(1(4(x1))))) 0(1(2(x1))) -> 5(1(0(5(2(3(x1)))))) 0(2(4(x1))) -> 0(2(1(4(3(x1))))) 0(4(2(x1))) -> 4(0(2(3(x1)))) 0(4(2(x1))) -> 4(0(5(5(2(x1))))) 0(0(4(2(x1)))) -> 0(0(2(2(3(4(x1)))))) 0(1(2(2(x1)))) -> 0(2(1(0(2(x1))))) 0(1(2(2(x1)))) -> 1(3(0(2(2(x1))))) 0(1(2(4(x1)))) -> 0(1(4(2(3(x1))))) 0(1(2(4(x1)))) -> 4(0(2(2(1(1(x1)))))) 0(1(2(4(x1)))) -> 4(0(5(5(2(1(x1)))))) 0(1(2(5(x1)))) -> 3(5(5(2(1(0(x1)))))) 0(1(4(2(x1)))) -> 0(5(2(1(4(x1))))) 0(1(5(2(x1)))) -> 1(5(0(2(3(x1))))) 0(1(5(2(x1)))) -> 0(2(2(1(0(5(x1)))))) 0(1(5(2(x1)))) -> 5(5(0(2(1(3(x1)))))) 0(2(4(2(x1)))) -> 0(5(4(3(2(2(x1)))))) 0(3(1(2(x1)))) -> 0(2(1(3(2(x1))))) 0(3(1(2(x1)))) -> 1(0(2(5(3(x1))))) 0(3(1(2(x1)))) -> 1(5(0(2(3(x1))))) 0(3(1(2(x1)))) -> 3(0(2(2(1(x1))))) 0(3(1(2(x1)))) -> 3(2(2(1(0(x1))))) 0(3(1(2(x1)))) -> 0(3(2(3(1(3(x1)))))) 0(3(4(2(x1)))) -> 0(2(2(3(4(x1))))) 5(0(1(2(x1)))) -> 1(3(2(5(0(x1))))) 5(0(1(2(x1)))) -> 5(0(2(1(3(3(x1)))))) 0(1(1(2(5(x1))))) -> 5(0(2(5(1(1(x1)))))) 0(2(3(4(2(x1))))) -> 3(2(2(3(4(0(x1)))))) 0(3(1(2(5(x1))))) -> 2(3(1(3(0(5(x1)))))) 0(3(1(5(2(x1))))) -> 0(3(2(5(1(2(x1)))))) 0(3(4(1(4(x1))))) -> 0(5(3(1(4(4(x1)))))) 0(3(5(1(2(x1))))) -> 5(5(3(2(1(0(x1)))))) 0(4(0(4(2(x1))))) -> 4(4(0(0(2(2(x1)))))) 0(4(1(1(2(x1))))) -> 3(1(4(0(2(1(x1)))))) 0(4(1(2(2(x1))))) -> 4(1(0(2(2(3(x1)))))) 0(4(1(2(5(x1))))) -> 3(4(1(0(2(5(x1)))))) 0(4(2(1(2(x1))))) -> 4(1(3(2(0(2(x1)))))) 0(4(2(1(4(x1))))) -> 0(2(1(4(4(4(x1)))))) 0(4(2(5(2(x1))))) -> 5(4(3(2(2(0(x1)))))) 0(4(5(1(2(x1))))) -> 1(4(2(0(5(5(x1)))))) 0(4(5(1(2(x1))))) -> 4(0(2(5(1(1(x1)))))) 5(0(1(2(2(x1))))) -> 5(0(2(2(1(2(x1)))))) 5(0(2(4(2(x1))))) -> 0(2(2(5(1(4(x1)))))) 5(0(4(4(2(x1))))) -> 0(5(2(5(4(4(x1)))))) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {6,5} transitions: 01(45) -> 46* 01(15) -> 16* 01(142) -> 143* 01(107) -> 108* 01(37) -> 38* 01(199) -> 200* 01(179) -> 180* 01(286) -> 287* 01(156) -> 157* 01(273) -> 274* 01(153) -> 154* 01(43) -> 44* 01(33) -> 34* 21(35) -> 36* 21(25) -> 26* 21(117) -> 118* 21(289) -> 290* 21(17) -> 18* 21(12) -> 13* 21(189) -> 190* 21(119) -> 120* 21(69) -> 70* 21(226) -> 227* 21(111) -> 112* 21(198) -> 199* 21(285) -> 286* 21(23) -> 24* 21(170) -> 171* 21(155) -> 156* 21(105) -> 106* 11(77) -> 78* 11(254) -> 255* 11(169) -> 170* 11(79) -> 80* 11(34) -> 35* 11(14) -> 15* 11(71) -> 72* 11(158) -> 159* 11(108) -> 109* 11(275) -> 276* 11(68) -> 69* 11(287) -> 288* 41(187) -> 188* 41(167) -> 168* 41(127) -> 128* 41(87) -> 88* 41(274) -> 275* 41(271) -> 272* 41(251) -> 252* 41(263) -> 264* 41(253) -> 254* 41(143) -> 144* 41(133) -> 134* 41(93) -> 94* 41(265) -> 266* 41(135) -> 136* 41(125) -> 126* 41(297) -> 298* 41(95) -> 96* 41(85) -> 86* 31(237) -> 238* 31(227) -> 228* 31(217) -> 218* 31(157) -> 158* 31(59) -> 60* 31(186) -> 187* 31(61) -> 62* 31(51) -> 52* 31(243) -> 244* 31(223) -> 224* 31(290) -> 291* 31(255) -> 256* 31(53) -> 54* 31(245) -> 246* 31(235) -> 236* 31(225) -> 226* 31(13) -> 14* 51(207) -> 208* 51(197) -> 198* 51(177) -> 178* 51(209) -> 210* 51(109) -> 110* 51(201) -> 202* 51(146) -> 147* 51(106) -> 107* 51(215) -> 216* 51(145) -> 146* 02(309) -> 310* 00(2) -> 5* 00(4) -> 5* 00(1) -> 5* 00(3) -> 5* 52(308) -> 309* 10(2) -> 1* 10(4) -> 1* 10(1) -> 1* 10(3) -> 1* 22(307) -> 308* 20(2) -> 2* 20(4) -> 2* 20(1) -> 2* 20(3) -> 2* 12(306) -> 307* 30(2) -> 3* 30(4) -> 3* 30(1) -> 3* 30(3) -> 3* 42(319) -> 320* 42(311) -> 312* 42(305) -> 306* 42(317) -> 318* 40(2) -> 4* 40(4) -> 4* 40(1) -> 4* 40(3) -> 4* 50(2) -> 6* 50(4) -> 6* 50(1) -> 6* 50(3) -> 6* 1 -> 93,77,59,43,23 2 -> 85,68,51,33,12 3 -> 95,79,61,45,25 4 -> 87,71,53,37,17 13 -> 155,153,145 15 -> 189* 16 -> 38,46,154,289,44,251,217,5 18 -> 13* 24 -> 13* 26 -> 13* 34 -> 251* 35 -> 225* 36 -> 15* 38 -> 34* 44 -> 34* 46 -> 34* 52 -> 197,125,105,34 54 -> 201,127,111,34 60 -> 207,133,117,34 62 -> 209,135,119,34 69 -> 169* 70 -> 273,177,35 72 -> 69* 78 -> 69* 80 -> 69* 86 -> 253,235,68 88 -> 263,237,68 94 -> 265,243,68 96 -> 271,245,68 105 -> 319* 106 -> 285,167,142 110 -> 44,251,5 111 -> 317* 112 -> 106* 117 -> 305* 118 -> 106* 119 -> 311* 120 -> 106* 126 -> 34* 128 -> 34* 134 -> 34* 136 -> 34* 143 -> 215* 144 -> 44,38,251,5 147 -> 142* 154 -> 289,34 156 -> 186* 159 -> 46,44,251,5 168 -> 14* 171 -> 105* 178 -> 179,146 180 -> 46,154,44,5 188 -> 177* 190 -> 223,15 200 -> 158* 202 -> 198* 208 -> 198* 210 -> 198* 216 -> 158* 218 -> 38,46,34,251,5 224 -> 16,154,143,217,46,34,251,5 228 -> 15* 236 -> 35* 238 -> 35* 244 -> 35* 246 -> 35* 252 -> 227* 254 -> 297* 256 -> 177* 264 -> 254* 266 -> 254* 272 -> 254* 276 -> 217* 288 -> 143* 291 -> 287* 298 -> 14* 310 -> 16,5,217 312 -> 306* 318 -> 306* 320 -> 306* problem: Qed