Problem:
0(1(2(x1))) -> 0(1(3(2(x1))))
0(1(2(x1))) -> 0(2(1(0(x1))))
0(1(2(x1))) -> 0(2(1(3(x1))))
0(1(2(x1))) -> 0(2(2(1(x1))))
0(1(2(x1))) -> 0(2(2(1(4(x1)))))
0(1(2(x1))) -> 5(1(0(5(2(3(x1))))))
0(2(4(x1))) -> 0(2(1(4(3(x1)))))
0(4(2(x1))) -> 4(0(2(3(x1))))
0(4(2(x1))) -> 4(0(5(5(2(x1)))))
0(0(4(2(x1)))) -> 0(0(2(2(3(4(x1))))))
0(1(2(2(x1)))) -> 0(2(1(0(2(x1)))))
0(1(2(2(x1)))) -> 1(3(0(2(2(x1)))))
0(1(2(4(x1)))) -> 0(1(4(2(3(x1)))))
0(1(2(4(x1)))) -> 4(0(2(2(1(1(x1))))))
0(1(2(4(x1)))) -> 4(0(5(5(2(1(x1))))))
0(1(2(5(x1)))) -> 3(5(5(2(1(0(x1))))))
0(1(4(2(x1)))) -> 0(5(2(1(4(x1)))))
0(1(5(2(x1)))) -> 1(5(0(2(3(x1)))))
0(1(5(2(x1)))) -> 0(2(2(1(0(5(x1))))))
0(1(5(2(x1)))) -> 5(5(0(2(1(3(x1))))))
0(2(4(2(x1)))) -> 0(5(4(3(2(2(x1))))))
0(3(1(2(x1)))) -> 0(2(1(3(2(x1)))))
0(3(1(2(x1)))) -> 1(0(2(5(3(x1)))))
0(3(1(2(x1)))) -> 1(5(0(2(3(x1)))))
0(3(1(2(x1)))) -> 3(0(2(2(1(x1)))))
0(3(1(2(x1)))) -> 3(2(2(1(0(x1)))))
0(3(1(2(x1)))) -> 0(3(2(3(1(3(x1))))))
0(3(4(2(x1)))) -> 0(2(2(3(4(x1)))))
5(0(1(2(x1)))) -> 1(3(2(5(0(x1)))))
5(0(1(2(x1)))) -> 5(0(2(1(3(3(x1))))))
0(1(1(2(5(x1))))) -> 5(0(2(5(1(1(x1))))))
0(2(3(4(2(x1))))) -> 3(2(2(3(4(0(x1))))))
0(3(1(2(5(x1))))) -> 2(3(1(3(0(5(x1))))))
0(3(1(5(2(x1))))) -> 0(3(2(5(1(2(x1))))))
0(3(4(1(4(x1))))) -> 0(5(3(1(4(4(x1))))))
0(3(5(1(2(x1))))) -> 5(5(3(2(1(0(x1))))))
0(4(0(4(2(x1))))) -> 4(4(0(0(2(2(x1))))))
0(4(1(1(2(x1))))) -> 3(1(4(0(2(1(x1))))))
0(4(1(2(2(x1))))) -> 4(1(0(2(2(3(x1))))))
0(4(1(2(5(x1))))) -> 3(4(1(0(2(5(x1))))))
0(4(2(1(2(x1))))) -> 4(1(3(2(0(2(x1))))))
0(4(2(1(4(x1))))) -> 0(2(1(4(4(4(x1))))))
0(4(2(5(2(x1))))) -> 5(4(3(2(2(0(x1))))))
0(4(5(1(2(x1))))) -> 1(4(2(0(5(5(x1))))))
0(4(5(1(2(x1))))) -> 4(0(2(5(1(1(x1))))))
5(0(1(2(2(x1))))) -> 5(0(2(2(1(2(x1))))))
5(0(2(4(2(x1))))) -> 0(2(2(5(1(4(x1))))))
5(0(4(4(2(x1))))) -> 0(5(2(5(4(4(x1))))))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {6,5}
transitions:
01(45) -> 46*
01(15) -> 16*
01(142) -> 143*
01(107) -> 108*
01(37) -> 38*
01(199) -> 200*
01(179) -> 180*
01(286) -> 287*
01(156) -> 157*
01(273) -> 274*
01(153) -> 154*
01(43) -> 44*
01(33) -> 34*
21(35) -> 36*
21(25) -> 26*
21(117) -> 118*
21(289) -> 290*
21(17) -> 18*
21(12) -> 13*
21(189) -> 190*
21(119) -> 120*
21(69) -> 70*
21(226) -> 227*
21(111) -> 112*
21(198) -> 199*
21(285) -> 286*
21(23) -> 24*
21(170) -> 171*
21(155) -> 156*
21(105) -> 106*
11(77) -> 78*
11(254) -> 255*
11(169) -> 170*
11(79) -> 80*
11(34) -> 35*
11(14) -> 15*
11(71) -> 72*
11(158) -> 159*
11(108) -> 109*
11(275) -> 276*
11(68) -> 69*
11(287) -> 288*
41(187) -> 188*
41(167) -> 168*
41(127) -> 128*
41(87) -> 88*
41(274) -> 275*
41(271) -> 272*
41(251) -> 252*
41(263) -> 264*
41(253) -> 254*
41(143) -> 144*
41(133) -> 134*
41(93) -> 94*
41(265) -> 266*
41(135) -> 136*
41(125) -> 126*
41(297) -> 298*
41(95) -> 96*
41(85) -> 86*
31(237) -> 238*
31(227) -> 228*
31(217) -> 218*
31(157) -> 158*
31(59) -> 60*
31(186) -> 187*
31(61) -> 62*
31(51) -> 52*
31(243) -> 244*
31(223) -> 224*
31(290) -> 291*
31(255) -> 256*
31(53) -> 54*
31(245) -> 246*
31(235) -> 236*
31(225) -> 226*
31(13) -> 14*
51(207) -> 208*
51(197) -> 198*
51(177) -> 178*
51(209) -> 210*
51(109) -> 110*
51(201) -> 202*
51(146) -> 147*
51(106) -> 107*
51(215) -> 216*
51(145) -> 146*
02(309) -> 310*
00(2) -> 5*
00(4) -> 5*
00(1) -> 5*
00(3) -> 5*
52(308) -> 309*
10(2) -> 1*
10(4) -> 1*
10(1) -> 1*
10(3) -> 1*
22(307) -> 308*
20(2) -> 2*
20(4) -> 2*
20(1) -> 2*
20(3) -> 2*
12(306) -> 307*
30(2) -> 3*
30(4) -> 3*
30(1) -> 3*
30(3) -> 3*
42(319) -> 320*
42(311) -> 312*
42(305) -> 306*
42(317) -> 318*
40(2) -> 4*
40(4) -> 4*
40(1) -> 4*
40(3) -> 4*
50(2) -> 6*
50(4) -> 6*
50(1) -> 6*
50(3) -> 6*
1 -> 93,77,59,43,23
2 -> 85,68,51,33,12
3 -> 95,79,61,45,25
4 -> 87,71,53,37,17
13 -> 155,153,145
15 -> 189*
16 -> 38,46,154,289,44,251,217,5
18 -> 13*
24 -> 13*
26 -> 13*
34 -> 251*
35 -> 225*
36 -> 15*
38 -> 34*
44 -> 34*
46 -> 34*
52 -> 197,125,105,34
54 -> 201,127,111,34
60 -> 207,133,117,34
62 -> 209,135,119,34
69 -> 169*
70 -> 273,177,35
72 -> 69*
78 -> 69*
80 -> 69*
86 -> 253,235,68
88 -> 263,237,68
94 -> 265,243,68
96 -> 271,245,68
105 -> 319*
106 -> 285,167,142
110 -> 44,251,5
111 -> 317*
112 -> 106*
117 -> 305*
118 -> 106*
119 -> 311*
120 -> 106*
126 -> 34*
128 -> 34*
134 -> 34*
136 -> 34*
143 -> 215*
144 -> 44,38,251,5
147 -> 142*
154 -> 289,34
156 -> 186*
159 -> 46,44,251,5
168 -> 14*
171 -> 105*
178 -> 179,146
180 -> 46,154,44,5
188 -> 177*
190 -> 223,15
200 -> 158*
202 -> 198*
208 -> 198*
210 -> 198*
216 -> 158*
218 -> 38,46,34,251,5
224 -> 16,154,143,217,46,34,251,5
228 -> 15*
236 -> 35*
238 -> 35*
244 -> 35*
246 -> 35*
252 -> 227*
254 -> 297*
256 -> 177*
264 -> 254*
266 -> 254*
272 -> 254*
276 -> 217*
288 -> 143*
291 -> 287*
298 -> 14*
310 -> 16,5,217
312 -> 306*
318 -> 306*
320 -> 306*
problem:
Qed